Air temperature equation derived from sonic temperature and water vapor mixing ratio for the air flow through closed-path eddy-covariance systems

Xinhua Zhou¹, Andrew E. Suyker², Jiaojun Zhu³, Xiaojie Zhen⁴, Ning Zhang⁵, Jane Okalebo², Tala Awada², Jianmin Chu^{*, 6}

¹ Campbell Scientific Inc., Logan, Utah, USA, ² University of Nebraska, Lincoln, Nebraska, USA, ³ Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China, ⁴ Beijing Techno Solutions Ltd., Beijing China, ⁵ Campbell Scientific Beijing Company, Beijing, China, USA, ⁶ Institute of Forestry, Chinese Academy of Forestry, Beijing, China

At high frequency, a closed-path eddy-covariance system measures sonic temperature in open space and water mixing ratio in the closed measurement camber with more stable temperature and pressure than in an open measurement space.

54 Street

Air temperature derived from sonic temperature and water mixing ratio in a closed-path eddy-covariance system has advantages over the temperature probe measured one in reflecting its high frequency fluctuations needed in flux calculations and in minimizing its solar contamination for measurement quality.

EC100

CH COMPANY

 $=\frac{I_s}{\left(1+0.51q\right)}$

- T air temperature
- T_s sonic temperature
- *q* specific humidity
- e water vapor pressure
- *P* atmospheric pressure

Schotanus et al. (1983)

 $\frac{1}{1+0.32\frac{e}{r}}$

Kaimal and Gaynor (1993)

SND equation

$$T = \frac{T_s}{\left(1 + 0.51 \frac{\rho_w}{\rho_d + \rho_w}\right)} = T_s \left(1 + 0.51 \frac{\chi_w}{1 + \chi_w}\right)^{-1}$$

- T air temperature
- T_s sonic temperature
- ρ_d dry air density
- ρ_w water vapor pressure
- χ_w water vapor mass mixing ratio

KG equation

$$T = \frac{T_s}{\left(1 + 0.32 \frac{R_v T \rho_w}{R_d T \rho_d + R_v T \rho_w}\right)} = T_s \left(1 + 0.51 \frac{\chi_w}{1 + 1.61 \chi_w}\right)^{-1}$$

- *T* air temperature
- T_s sonic temperature
- χ_w atmospheric pressure

 ΔT = |SND equation – KG equation|

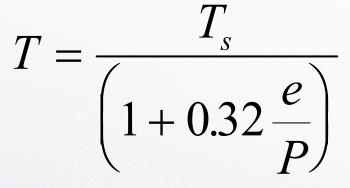
$$\Delta T = \frac{0.31T_s \chi_w^2}{1 + 3.63\chi_w + 3.20\chi_w^2}$$

$$T_{s}$$
: -30 ~ 57 °C
 χ_{w} : 0~ 45 g kg⁻¹
 ΔT : 0 ~ 0.176 °C

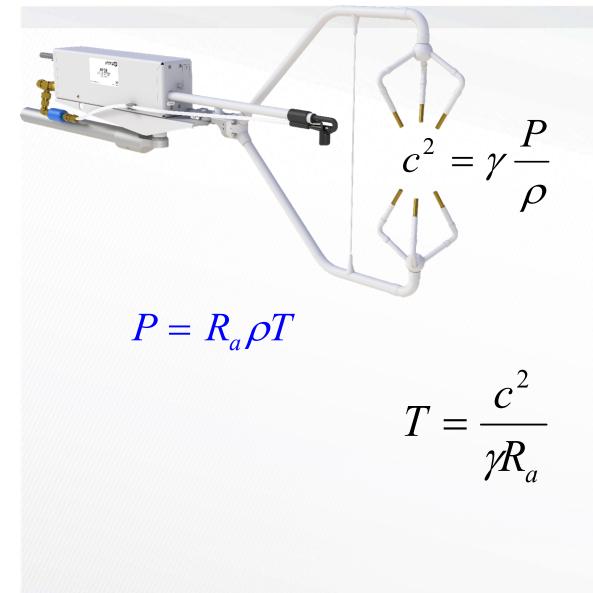
$$T = \frac{T_s}{\left(1 + 0.51q\right)}$$

- T air temperature
- T_s sonic temperature
- *q* specific humidity
- e water vapor pressure
- *P* atmospheric pressure

Schotanus et al. 1983



Ishii (1932) Barrent and Suomi (1949) Kaimal and Gaynor (1993)



Barrrett and Suomi (1949)

- c speed of sound
- γ ratio of moist air specific heat between constant pressure and constant volume
- *P* atmospheric pressure
- ρ moist air density
- R_a gas constant of moist air
- *T* air temperature

 $T = \frac{c^2}{\gamma R_a}$

 $T_s = \frac{c^2}{\gamma_d R_d}$

- *T* air temperature
- $T_{\rm s}$ sonic temperature
- c speed of sound
- γ ratio of moist air specific heat between constant pressure and constant volume
- γ_d ratio of dry air specific heat between constant pressure and constant volume (1.400279)
- R_a gas constant of moist air
- R_d gas constant of dry air (287 J K⁻¹ kg⁻¹)

Sonic temperature of moist air is the temperature that its dry air component can reach at the same enthalpy as the moist air has.

Equation derived from the first principals without any approximation

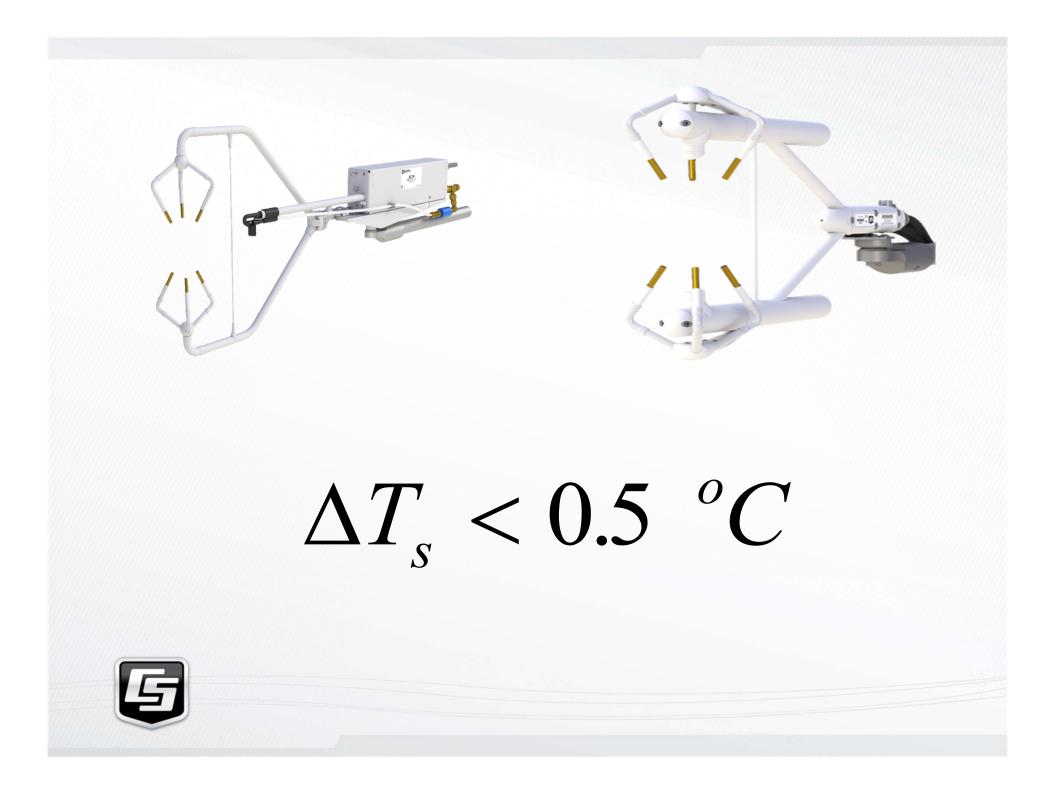
$$T = T_{s} \frac{\left(1 + \varepsilon \chi_{H2O}\right) \left(1 + \varepsilon \gamma_{v} \chi_{H2O}\right)}{\left(1 + \chi_{H2O}\right) \left(1 + \varepsilon \gamma_{p} \chi_{H2O}\right)}$$

- *T* air temperature
- T_s sonic temperature
- γ_v ratio of specific heat at constant volume between water vapor and dry air (2.04045)
- γ_p ratio of specific heat at constant pressure between water vapor and dry air (1.94422)
- ε ratio of molecular mass between water vapor and dry air (0.622). χ_{H2O} water molar mixing ratio

Error in calculated air temperature

$$\Delta T = \frac{T(T_s, \chi_{H2O})}{T_s} \Delta T_s + T(T_s, \chi_{H2O}) \left[\frac{\varepsilon + \varepsilon \gamma_v (1 + 2\varepsilon \chi_{H2O})}{(1 + \varepsilon \chi_{H2O}) (1 + \varepsilon \gamma_v \chi_{H2O})} - \frac{1 + \varepsilon \gamma_p (1 + 2\chi_{H2O})}{(1 + \chi_{H2O}) (1 + \varepsilon \gamma_p \chi_{H2O})} \right] \Delta \chi_{H2O}$$

- T air temperature
- T_s sonic temperature
- γ_v ratio of specific heat at constant volume between water vapor and dry air (2.04045)
- γ_p ratio of specific heat at constant pressure between water vapor and dry air (1.94422)
- ε ratio of molecular mass between water vapor and dry air (0.622). χ_{H2O} water molar mixing ratio



$\Delta \chi_{H2O} = \Delta \chi_{H2O}^{p} + \Delta \chi_{H2O}^{s} + \Delta \chi_{H2O}^{g} + \Delta \chi_{H2O}^{z}$

precision sensitivity gain drift zero drift to CO_2

Maximum error ranges of calculated air temperature at different relative humidity

